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Montroll–Weiss Problem, Fractional Equations,
and Stable Distributions

Vladimir V. Uchaikin1
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Asymptotic solutions of the m-dimensional Montroll–Weiss’ jump problem are
obtained. They cover both the subdiffusive and the superdiffusive regime, obey
fractional differential equations, and are expressed in terms of stable distributions.
Analytical investigation and numerical calculations of anomalous diffusion
distributions are performed and their properties are discussed.

1. INTRODUCTION

The Montroll–Weiss (MW) problem [17] is formulated as the problem
of finding the probability distribution p(x, t), x P Rm, for a particle performing
random instantaneous jumps R1, R2, . . . , Rj , . . . P Rm at random waiting
times T1, T1 1 T2, . . . , T1 1 T2 1 Tj , . . . , Ti P R1

1. The random variables
Ri and Ti are independent and their distribution densities p(x) and q(t) do not
depend on time and place, respectively. Numerous examples of applications
of the model to concrete physical and biological systems and processes are
reviewed in refs. 3, 12, and 28. We concentrate only on mathematical aspects
of this problem.

The Fourier–Laplace transform of the distribution

p(k, l) 5 #
Rm

dx #
`

0

dt eik?x2lt p(x, t), k P Rm

is easily expressed in terms of the Laplace transform of the waiting-time
distribution
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q(l) 5 #
`

0

e2ltq(t) dt

and the Fourier transform of the jump distribution

p(k) 5 #
Rm

eik?xp(x) dx

If the particle begins its history waiting at the origin of space-time coordinates
(x 5 0, t 5 0), then

p(k, l) 5
1 2 q(l)

l[1 2 p(k)q(l)]
(1.1)

This is just the Montroll–Weiss result.
We will suppose the jump distribution p(x) to be isotropic, so p(k) is a

function of .k. only.
At large time when the particle has performed many jumps and the

spatial distribution of probability becomes wide, the density

p(x, t) 5 i21(2p)2m21 #
Rm

dk #
L

dl eik?x1ltp(k, l)

is determined by the behavior of the transform p(k, l) in the region of small
k and l.

If

#
Rm

p(x).x.2 dx [ ^R2& (1.2)

and

#
`

0

q(t)t dt [ ^T & (1.3)

are finite, then

1 2 q(l) , ^T &l, l → 0 (1.4)

and

p(k) , 1 2 ^R2/2&.k.2, k → 0 (1.5)

On substituting (1.4) and (1.5) into Eq. (1.1), we obtain

p(k, l) , pas(k, l) 5
1

l 1 Dk2 , l → 0, k → 0
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where

D 5 ^R2/2&/^T &

This is nothing but the Fourier–Laplace transform of the Gauss distribution

pas(x, t) 5 (4pDt)2m/2 exp{2x2/(4Dt)} (1.6)

obeying the ordinary diffusion equation

pas(x, t)
t

5 DDpas(x, t) 1 d(x)d(t) (1.7)

where d(x) and d(t) are m-dimensional and one-dimensional Dirac functions,
respectively. We will call Eq. (1.6) the ordinary diffusion distribution (ODD).
The width of the ODD increases in the fashion t1/2.

If one or both of values (1.2) and (1.3) are infinite but the correspond-
ing conditions

#
.x..r

p(x) dx , Ar 2a, r → `, 0 , a , 2 (1.8)

and

#
`

t

q(t) dt , Bt2b, t → `, 0 , b , 1 (1.9)

hold, we obtain a model of anomalous diffusion, for which a complete set
of solutions has not been found. The aim of this article is to fill the gap.

2. STABLE DISTRIBUTIONS

Let us recall some facts from the stable law theory. A spherically symmet-
ric, m-dimensional stable density with the characteristic exponent a, ga

m(x),
is defined by its characteristic function

g(a)
m (k) [ #

Rm
eik?xg(a)

m (x) dx 5 e2.k.a, 0 , a # 2 (2.1)

The backward transformation of (2.1) can be performed in terms of elementary
functions in two cases only:

g(2)
m (x) 5 (4p)2m/2 exp{2.x.2/4}

which is the Gauss distribution, and

g(1)
m (x) 5 G((m 1 1)/2)[p(1 1 .x.2)]2(m11)/2

which is the Cauchy distribution. The rest of the densities are expressed in
terms of Bessel functions [33]
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g(a)
m (x) 5 (2p)2m/2 #

`

0

e2sa
Jm/221(s.x.)(s.x.)12m/2sm21 ds

With this integral representation, the two following series are useful:

g(a)
m (x) 5

a
2

(4p)2m/2 o
`

n51
(21)n21 G((an 1 m)/2)

G(n)G(1 2 an/2) 1.x.
2 2

2m2na

g(a)
m (x) 5

2
a

(4p)2m/2 o
`

n50
(21)n G((2n 1 m)/a)

G(n 1 m/2)G(n 1 1) 1.x.
2 2

2n

The first converges for a P (0, 1) and is asymptotic for a P [1, 2), the
second on the contrary, converges in the range a P [1, 2] and is asymptotic
for a P (0, 1).

The main reason stable laws arise in the diffusion problem is that they
play the same limit role by summing independent random variables with an
infinite variance as the Gauss law in the case of a finite variance.

If m-dimensional independent vectors R1, . . . , Rn have common spheri-
cally symmetric density p(x) obeying condition (1.8), then a sequence of
positive numbers an can be found such that the normalized sum

Zn 5 Xn /an , Xn 5 o
n

i51
Ri

will be distributed according to the m-dimensional symmetric, stable density
g(a)

m (x) as n → `:

Prob{Zn P dx} → g(a)
m (x) dx, n → ` (2.2)

The sequence can be chosen in the form

an 5 a(m)
1 (a)n1/a

where a(m)
1 (a) is calculated in the Appendix.

The family of stable laws is not exhausted by the symmetric distributions
[26]. For example, the family of standardized one-dimensional stable laws
is a two-parameter set of distributions g(a,u)

1 (t). The parameter u characterizes
the degree of asymmetry: if u 5 0, then the distribution is symmetric. If a ,
1 and u 5 1, then the distributions are concentrated on the positive semiaxis
only (so-called one-sided stable distributions), One of them is known as the
Smirnov (or Lévy) distribution:

g(1/2,1)
1 (t) 5

1

2!p
t23/2e21/(4t), t . 0

The other one-sided distributions are not expressible in terms of elementary
functions, but their Laplace transforms
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g(b,1)
1 (l) [ #

`

0

e2ltg(b,1)
1 (t) dt 5 e2lb

, t . 0 (2.3)

and Mellin transforms

g(b,1)
1 (s) [ #

`

0

tsg(b,1)(t) dt 5 G(1 2 s/b)/G(1 2 s)

are written in a simple form. The following relation is easily proved with
the use of the preceding equality:

#
`

0

g(2)
1 (rtb/2)g(b,1)

1 (t)tb/2 dt 5 b21r 2122/bg(b/2,1)
1 (r 22/b) (2.4)

The density g(b,1)
1 (t) can be represented in the form of a convergent series

for any t . 0,

g(b,1)
1 (t) 5

1
p o

`

n51

(21)n21

n!
G(1 1 nb) sin(npb)t2nb21

There exists also an asymptotic series as t → 0 [26], the leading term of
which has the form

g(b,1)
1 (t) , at2g exp{2btd} (2.5)

where

a 5 [2p(1 2 b)]21/bb1/(222b)

g 5 (1 2 b/2)/(1 2 b)

b 5 (1 2 b)bd

d 5 b/(1 2 b)

If independent variables T1, . . . , Tn P R1
1 have a common distribution

density q(t) satisfying condition (1.9), then a sequence of positive numbers
bn exists such that the normalized sum

Qn 5 o
n

i51
Ti /bn

is distributed according to the one-sided stable law g(b,1)
1 (t) as n → `:

Prob{t # Qn , t 1 dt} → g(b,1)
1 (t) dt, n → ` (2.6)

It is known [26] that bn can be chosen in the form

bn 5 b1(b)n1/b
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with

b1(b) 5 [BG(1 2 b)]1/b

3. ASYMPTOTIC SOLUTIONS OF MW PROBLEM

Let us return to the MW problem.
According to the Tauberian theorem (see, for example, ref. 8) the asymp-

totic expressions (1.8) and (1.9) provide the following behavior of transforms
p(k) and q(l) at small arguments:

1 2 p(k) , A8.k.a, k → 0, A8 5 22aA
G(m/2)G(1 2 a/2)

G((a 1 m)/2)

1 2 q(l) , B8lb, l → 0, B8 5 G(1 2 b)B

Three cases arise in addition to the normal case considered above:

A. 1 2 p(k) , A8.k.a, 1 2 q(l) , ^T &l.
B. 1 2 p(k) , ^R2/2&.k.2, 1 2 q(l) , B8lb.
C. 1 2 p(k) , A8.k.a, 1 2 q(l) , B8lb.

Substituting these expressions in Eq. (1.1) we obtain respectively

pas
A(k, l) 5

1
l 1 DA.k.a

, DA 5
A8

^T &
(3.1)

pas
B (k, l) 5

lb21

lb 1 DB.k.2 , DB 5
^R2/2&

B8
(3.2)

pas
C (k, l) 5

lb21

lb 1 DC.k.a
, DC 5

A8

B8
(3.3)

On reversing the Laplace transformation in the case (3.1)

pas
A(k, t) 5

1
2pi #C

elt dl
l 1 DA.k.a

5 exp{2DA.k.at}

we readily arrive at the characteristic function (2.1) of the m-dimensional,
spherically symmetric stable distribution with the characteristic exponent a
describing the subdiffusion behavior

pas
A(x, t) 5 (DAt)2m/ag(a)

m (x(DAt)21/a) (3.4)

The variance of the distribution diverges and cannot be used for description
of the width of the diffusion packet. But it is clear from Eq. (3.4) that the
width grows with t by the law t1/a, a , 2, i.e., faster then in the normal case.
Therefore we observe superdiffusive behavior.
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The two other transforms (3.2) and (3.3) can be represented in the
same form,

pas(k, l) 5 lb21 #
`

0

exp{2[lb 1 D.k.a]y} dy

On reversing the Laplace transformation

pas(k, t) 5 #
`

0

dy e2D.k.ay(2pi)21 #
L

dl lb21 exp{lt 2 lby}

taking the inside integral by parts

#
L

dl lb21elt2lby 5 2(by)21 #
L

eltde2lby 5 t(by)21 #
L

e2lby1lt dl

and making the change of variable

s 5 y1/bl

we obtain

pas(k, t) 5 b21t #
`

0

dy e2D.k.ayy2121/bF(2pi)21 #
S

esy21/bt2sb
dsG

As is clear from Eq. (2.3), the square brackets contain the one-sided density
g(b,1)

1 (ty21/b), so the expression can be rewritten in the following way:

pas(k, t) 5 #
`

0

exp{2D.k.atb /tb}g(b,1)
1 (t) dt

The inverse Fourier transformation leads to the final result:

pas(x, t) 5 (Dtb)2m/aC(a,b)
m (.x.(Dtb)21/a) (3.5)

where

C(a,b)
m (r) 5 #

`

0

g(a)
m (rtb/a)g(b,1)

1 (t)tmb/adt (3.6)

and

D 5 HDB if a 5 2
DC if a , 2

As one can see from Eq. (3.5), the law of the diffusion packet spreading is
determined by the ratio b/a: the process has superdiffusive behavior if b .
a/2 and subdiffusive behavior if b , a/2. We will call (3.6) the anomalous
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diffusion distribution (ADD). When b 5 a/2 the width of the diffusion packet
grows in time as in the normal case, but its form differs from Gaussian and
depends on a.

The ADDs can be obtained in a simple way as a result of (2.2) and
(2.6). Let N(t) be a random number of jumps in time t. The position of the
particle at the time t is

X(t) 5 o
N(t)

i51
Ri

According to (2.2), the conditional probability is given by

P{X(t) P dx.N(t) 5 n} , g(a)
m (x/an)a2m

n dx (3.7)

with

an 5 a(m)
1 (a)n1/a

If ^T & , `, then N , t/^T & as t → ` and we arrive at Eq. (3.4). If ^T & 5
`, but the condition (1.9) holds, then the probability

Wn [ Prob{N(t) 5 n} 5 ProbHo
n

i51
Ti , tJ 2 ProbHo

n11

i51
Ti , tJ

is expressed in terms of densities g(b,1)
1 as follows:

Wn , nb21g(b,1)
1 (t/bn)t/bn , t → `

with

bn 5 b1(b)n1/b

Now, averaging Eq. (3.7) over all possible numbers of jumps

p(x, t) 5 o
`

n51
g(a)

m (x/an)a2m
n Wn

and passing from summation to integration with respect to t 5 t/bn , we
readily get Eqs. (3.5) and (3.6).

4. FRACTIONAL DIFFUSION EQUATIONS

There exist different constructions of fractional derivatives [15, 19,
20]. We recall here only two which will be needed below. The first is the
Riemann–Liouville derivative
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Dm
01 f (t) 5

1
G(1 2 m)

d
dt #

t

0

f (t) dt
(t 2 t)m , m , 1

Because the integral is nothing but the convolution of the functions f (t) and

t2m
1 5 Ht2m, t . 0

0, t , 0

i.e.,

h(t) [ #
t

0

(t 2 t)2mf (t) dt 5 f (t) ∗ t2m
1 , t . 0

its Laplace transform has the form

h(l) [ #
`

0

e2lth(t) dt 5 f (l) #
`

0

t2me2lt dt 5 lm21f (l)G(1 2 m)

It is easy to see now that

#
`

0

e2ltDm
01 f (t) dt 5 lmf (l) (4.1)

The second kind of fractional derivative we will use below is given by
the m-dimensional Riesz operator,

(2D)n/2f (x) 5
1

dm,l(n) #Rm

Dl
y f (x)

.y.m1n dy

where l . a, x P Rm, y P Rm,

Dl
y f (x) 5 o

l

k50
(21)k1 l

k2 f (x 2 ky)

and

dm,l(n) 5 #
Rm

(1 2 eiy1)l.y.2m2n dy

One can show [20]

#
Rm

eikm(2D)n/2f (x) dx 5 .k.nf (k) (4.2)

where f (k) is the Fourier transform of the function f (x). The formula general-
izes the relation
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#
Rm

eikxDf (x) dx 5 2k2f (k)

where D is the m-dimensional Laplacian.
Now, if we rewrite Eq. (3.1) in the form

lpas(k, l) 5 2D.k.apas(x, t) 1 1

and invert the Fourier–Laplace transform using the relation (4.2), then we
obtain the fractional superdiffusion equation

pas(x, t)
t

5 2D(2D)a/2pas(x, t) 1 d(x)d(t) (4.3)

Applying such a procedure to Eqs. (3.2) and (3.3) with the use of Eq. (4.1)
we get the equation

Db
01pas(x, t) 5 2D(2D)a/2pas(x, t) 1

t2b

G(1 2 b)
d(x) (4.4)

which gives the fractional subdiffusive equation in the case a 5 2:

Db
01pas(x, t) 5 DDpas(x, t) 1

t2b

G(1 2 b)
d(x) (4.5)

Writing (4.4) in a more general form,

Db2g
01 pas(x, t) 5 2DD2g

01(2D)a/2pas(x, t) 1
t2b1g

G(1 2 b 1 g)
d(x) (4.6)

and setting here g 5 b 2 1 or g 5 b, we obtain two more special forms of
the equation:

pas(x, t)
t

5 2DD12b
01 (2D)a/2pas(x, t) 1 D(x)d(t) (4.7)

pas(x, t) 5 2DD2b
01(2D)a/2pas(x, t) 1 d(x) (4.8)

According to ref. 20,

D2b
01 f (t) 5

1
G(1 1 b)

d
dt #

t

0

f (t)(t 2 t)b dt

5
1

G(b) #
t

0

f (t)(t 2 t)b21 dt

5 Ib
01 f (t)

is a fractional integral of order b.
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Equations (4.6)–(4.8) generalize the ordinary diffusion equation (1.7)
to the case of anomalous diffusion.

5. ANOMALOUS DIFFUSION DISTRIBUTIONS

The following properties of the obtained ADDs can be more or less easily
established via the relations given in Section 2 and some simple arguments.

1. The densities C(a,b)
m12(r) and C(a,b)

m (r) are linked via the relation

C(a,b)
m12(r) 5 2

1
2pr

dC(a,b)
m (r)

dr

2. Similarly to the normal case, the projection of a diffusible m-dimen-
sional vector X(t) on an m8-dimensional subspace (m8 , m) diffuses according
to an m8-dimensional law with the same parameters a and b.

3. In contrast to the normal case, different coordinates X1(t), . . . , Xm(t) of
a particle performing anomalous diffusion are not independent of each other.

4. The ADD C(a,b)
m (r) is a decreasing function of r and its maximal

value C(a,b)
m (0) is finite only if m , a:

C(a,b)
m (0) 5

G(1 1 m/a)G(1 2 m/a)
(4p)m/2G(1 1 m/2)G(1 2 mb/a)

In particular,

C(a,b)
1 (0) 5

csc(p/a)
aG(1 2 b/a)

5. In the case b 5 1, the ADD becomes the stable distribution:

C(a,1)
m (r) 5 g(a)

m (r)

6. If a 5 2 and b , 1, then

C(2,b)
1 (0) 5 [2G(1 2 b/2)]21

C(2,b)
2 (r) , [2pG(1 2 b)]21.ln r., r → 0

and for m $ 3

C(2,b)
m (r) , (4p)2m/2[G(m/2 2 1)/G(1 2 b)](r/2)2(m22), r → 0

7. At large distances

C(2,b)
m (r) , (4p)2m/2(2 2 b)21/2b[(m11)b/221]/(22b)

3 (r/2)2m(12b)/(22b) exp{2(2 2 b)bb/(22b)(r/2)2/(22b)} (5.1)
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8. In the one-dimensional case with a 5 2 the expression (3.6) is
essentially simplified due to (2.4):

C(2,b)
1 (r) 5 b21r 2122/bg(b/2,1)

1 (r 22/b) (5.2)

Setting b 5 1, we obtain

C(2,1)
1 (r) 5

1

!4p
e2r2/4

and in the case b 5 2/3

C(2,2/3)
1 (r) 5

1
2p

!rK1/3(2r 3/2/!27)

9. In the case a 5 1, b 5 1/2 the ADDs of all dimensions are expressed
in terms of the incomplete gamma function:

C(1,1/2)
m (r) 5

2

!p

G((m 1 1)/2)
(4p)(m11)/2 er2/4G(1 2 (m 1 1)/2, r 2/4)

For odd dimensions

C(1,1/2)
m (r) 5

2

!p

G((m 1 1)/2)
(4p)(m11)/2 1r 2

4 2
m

er2/4E(m11)/2(r 2/4)

where m 5 1 2 (m 1 1)/2.
10. The Mellin transform of the ADD is of the form

C̃(a,b)
m (s) [ #

`

0

C(a,b)
m (r)r s21 dr

5
2sG(1 2 (m 2 s)/a)G(s/2)G((m 2 s)/a)

a(4p)m/2G(1 2 (m 2 s)b/a)G((m 2 s)/2)

11. When a 5 2

^.X(t).2n& 5
G(n 1 m/2)G(n 1 1)

G(m/2)G(nb 1 1)
(4Dtb)n (5.3)

One-sided stable densities g(b,1)
1 (t) and superdiffusion distributions

C(a,1)
m (r), being merely the spherical symmetric stable densities

C(a,1)
m (r) 5 g(a)

m (r)

can be found in ref. 26. Subdiffusive distributions C(2,b)
m (r) for m 5 1, 2, and

3 are plotted in Figs. 1–3.
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Fig. 1. One-dimensional anomalous diffusion distributions C(2,b)
1 (r) for b 5 1/3, 1/2, 2/3,

5/6, and 1 (the normal distribution).

Fig. 2. Two-dimensional ADDs C(2,b)
2 (r) for the same values of b as in Fig. 1.
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Fig. 3. Three-dimensional ADDs C(2,b)
3 (r) for the same values of b as in Fig. 1.

6. FOX FUNCTION REPRESENTATION OF ADDs

The Fox function or H-function, also called the generalized G-function or
generalized Mellin–Barnes function, is a general function of hypergeometrical
type [9, 14, 24]. It represents a rich class of functions which contains functions
such as Meijer’s G-function, hypergeometric functions, Wright’s hypergeo-
metric series, Bessel functions, Mittag–Leffler functions, etc., as special cases.

Let m, n, p, and q be integer numbers such that 0 # n # p and 1 #
m # q. The Fox function of order (m, n, p, q) is defined by the Mellin–Barnes
type integral

H mn
pq 1zZ (a1, a1) . . . (an , an) (an11, an11) . . . (ap , ap)

(b1, b1) . . . (bm , bm) (bm11, bm11) . . . (bq , bq)2 5
1

2pi #C

h(s)zs ds

where

h(s) 5
A(s)B(s)
C(s)D(s)

A(s) 5 p
m

j51
G(bj 2 bj s)

B(s) 5 p
n

j51
G(1 2 aj 1 aj s)
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C(s) 5 p
q

j5m11
G(1 2 bj 1 bj s)

D(s) 5 p
p

j5n11
G(aj 2 aj s)

and empty products are interpreted as unity. The parameters a1, . . . , ap ,
b1, . . . , bq are positive numbers and a1, . . . , ap , b1, . . . , bq are complex
numbers satisfying

aj (bk 1 n) Þ bk(aj 2 1 2 l)

for n, l 5 0, 1, . . . ; k 5 1, . . . , m; j 5 1, . . . , n. Here C is a contour in
the complex s-plane separating the poles in such a way that the poles of A(s)
lie to the right and the poles of B(s) lie to the left of the contour.

Let

m 5 o
q

j51
bj 2 o

p

j51
aj

and

b 5 p
p

j51
aaj

j p
q

j51
b2bj

j

The Fox function is an analytic function of z (i) for every z Þ 0 if m . 0
and (ii) for 0 , .z. , b21 if m 5 0. In general, the Fox function is multiple
valued due to the factor zs in the integral representation, but it is single valued
on the Riemann surface of ln z.

The theorem of residues enables ones to express the Fox function as
the infinite series

H pq
mn(z) 5 o

m

j51
o
`

k50

(21)k

k!

cjkzsjk

bj

where

sjk 5 (bj 1 k)/bj

cjk 5
Aj (sjk)B(sjk)

C(sjk)D(sjk)
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and

Aj (s) 5 p
m

l51,lÞj
G(bl 2 bls)

Using these facts together with those cited in Sections 2 and 5, one can
easily represent stable distributions and ADDs in terms of Fox functions:

C(a,1)
m (r) 5 g(a)

m (r) 5
1
2

(r!p)2mH 11
2112

rZ(1 2 m/2, 1/2)(1, 1/2)
(1, 1/a) 2, a , 1

(6.1)

C(a,1)
m (r) 5 g(a)

m (r) 5
2
a

(2!p)2mH 11
121r 2

4 Z (1 2 m/a, 2/a)
(0, 1)(1 2 m/2, 1)2, a # 1

(6.2)

g(b,1)
1 (t) 5

1
b

t22H 10
1111

t Z (21, 1)
(21/b, 1/gb)2, b , 1

C(a,b)
m (r) 5

b
2

(4p)2m/212
r2

m1a

3 H 12
32112

r2
bZ(21, 1/a)(1 2 (a 1 m)/2, b/2)(1 2 a/2, 1/2)

(0, 1/a)(21, 1/a) 2,

a , 1

C(a,b)
m (r) 5 (ar!p)2mH 21

231r
2Z (1, 1/a)(1, b/a)

(1, 1/a)(m/2, 1/2)(1, 1/2)2, 1 # a , 2

C(2,b)
m (r) 5 (2r!p)2mH 20

121r
2Z (1, b/2)

(1, 1/2)(m/2, 1/2)2 (6.3)

7. CONCLUDING REMARKS

The main result of this article is represented by equations (4.6)–(4.8),
their solutions (3.5), (3.6) with the properties discussed in Sec. 5 and results
of numerical calculations (Sec. 7). But special cases were considered in the
works published by different authors in the last decade or so. Let us indicate
some of them.

The first supposition about the fractional kind of the equation similar
to (4.3) for description of diffusion in a turbulent medium was made in
[Monin, 1995]. Weissman and coworkers [Weissman et al., 1989] note that
the approximation (5.1) was found by Daniels [Daniels, 1954]. The result
(5.2) was obtained in [Tunaley, 1974]. A special version of Eq. (4.8) for
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a 5 2 and m 5 1 was derived by Balakrishnan [Balakrishnan, 1985] (see
also [Barkai, 2000]). The one-dimensional version of Eq. (4.5) coincides
with Eq. (2.1) of the work [Wyss, 1986] and with Eq. (27) of the work
[Nigmatullin, 1986]. Eq. (4.8) with a 5 2, (5.2) and (6.3) are considered
in [Schneider & Wyss, 1989] (Eqs. (3.1); (3.17) and (2.14) with k 5 0
correspondingly). Fourier transform (3.3) is in agreement with formula (57)
of the work [Afanasiev et al., 1991]. In the one-dimensional case, the distribu-
tions (6.1) and (6.2) coincide with symmetrical densities following from Eqs.
(2.15) and (2.12) of the work [Schneider, 1986]. For m 5 1 equation (3.4)
corresponds to Eq. (20) of the work [Schlesinger et al., 1982] and in the
case of many dimensions it is obtained in [Hilfer, 1995]. Eqs. (13)–(15) of
the work [Compte, 1996] are special cases of our equation (4.6) up to nota-
tions. Eqs. (38) and (39) from [Compte et al., 1997] are three-dimensional
versions of our equations (4.5) and (4.3) correspondingly. Eq. (20) of the
work [West et al., 1997] coincides with one-dimensional version of our Eq.
(4.7) under conditions a 5 2 and b 5 1 2 b8. In the one-dimensional case
Eq. (4.4) reduces to Eq. (6.6) of the work [Zaslavsky, 1994] being written
for symmetrical diffusion, and Eqs. (3.5)–(3.6) are in agreement with Eqs.
(36) and (38) of the work [Kotulski, 1995]. Such agreement takes place with
other one-dimensional results obtained in works [Mainardi, 1999, Saichev,
1997] and others.

Notice that the incorrect notation for fractional derivative in [West et
al., 1997] (see formulas (19)–(20) in [West et al., 1997]) led the authors to
the incorrect conclusion that the case b8 , 1 corresponds to the superdiffusive
regime. The assertion that the fractional diffusion equations have solutions
in the form of Gaussian density with a rectified variance (formula (20.12.4)
of the book [Klimontovich, 1995]) does not correspond to the facts.

APPENDIX: EVALUATION OF an

Let X be an m-dimensional random vector with spherically symmetric
distribution such that

Prob{.X. . r} 5 HAr 2a, r . A1/a

1, r , A1/a

Its characteristic function w(k) is of the form

wX(k) 5 #
.x..A1/a

eik?xpx(x) d mx

5 2m/221aAG(m/2).k.a #
`

.k.A1/a
j2a2m/2Jm/221(j) dj

On integrating by parts, we bring the integral to the form
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#
`

.k.A1/a
j2a2m/2Jm/221(j) dj

5 a21(.k.A1/a)2a2m/211Jm/221(.k.A1/a)

2 a21 #
`

.k.A1/a
j2a2m/211Jm/2(j) dj

, [2m/221aAG(m/2)]2a.k.2a 2 a21 #
`

0

j2a2m/211Jm/2(j) dj,

.k. → 0

Hence,

wX (k) , 1 2 2m/221AG(m/2).k.a #
`

0

j2a2m/211Jm/2(j) dj

5 1 2 22aA
G(m/2)G(1 2 a/2)

G((m 1 a)/2)
.k.a, .k. → 0

and the characteristic function of the sum Sn 5 (n
i51 Xi is

wSn(k) , F1 2 22aA
G(m/2)G(1 2 a/2)

G((m 1 a)/2)
.k.aGn

, .k. → 0

Comparing the characteristic function of the normalized vectorial sum Zn 5
sn /an

wZn(k) 5 wSn(k/an), n → `

with the limiting form (10), one finds out that

an 5 a(m)
1 (a)n1/a, a(m)

1 (a) 5
1
2 FA

G(m/2)G(1 2 a/2)
G((m 1 a)/2) G1/a
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